
Claims Investigation Committee Multi-Input Testing Device
ECE-4820: Electrical and Computer Engineering Design II

Dylan-Matthew Garza Daniel Baker Rohullah Sah

Department of Electrical and Computer Engineering
Western Michigan University

ZF Group
Auburn Hills, MI

Fall 2024

Faculty Advisor:
Dr. Janos Grantner

Sponsor Manager:
Patrick McNally



Introduction Design and Implementation Verification Challenges Future Work Closing

Table of Contents

1 Introduction
ZF
Claims Investigation Committee
Project Motivation
Our Solution
Key Devices Under Test

2 Design and Implementation
Project Solution and Overview
Hardware Design
Device Interfacing and Testing
Embedded Linux With Yocto Project
Inter-Processor Communication
Web Application and Server

3 Verification

4 Challenges

5 Future Work

6 Closing

2 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

ZF

ZF

Who is ZF?
Global technology company and Tier 1 automotive
supplier
Provides advanced safety systems and vehicle control
solutions
Partners with major OEMs: Daimler, Chrysler, Tesla,
Waymo(Google), etc.
A leading innovator in commercial vehicle technology

North American Headquarters
Project based at ZF Group’s North American
headquarters in Auburn Hills, MI
Specializes in commercial vehicle solutions
This facility is also home to the Claims Investigation
Center

Figure 1: Source: google.com
ZF Group Office in Auburn Hills, MI

3 / 46

google.com


Introduction Design and Implementation Verification Challenges Future Work Closing

Claims Investigation Committee

Claims Investigation Committee

What is the Claims Investigation Center?

Specialized team focused on testing and initial investigation of field failure parts for commercial vehicles
Identifies new field failures and determine areas for product improvement
Works closely with Technical Call Centers, Field Quality, and Warranty teams
Ensures readiness to test and analyze new product field returns at launch

CIC’s Role in Our Project

Requires enhanced testing capabilites for new products
Our project aims to develop a device to streamline testing and data collection
Helps the CIC efficiently validate warranty claims and analyze field returns
Supports the CIC’s mission to improve product quality and customer satisfaction

4 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Project Motivation

Motivation for the Project

Challenges with Current Testing Methods

Testing on current brake system platform (mBSP) was built
and industrialized specifically for that platform
Long lead time and significant cost to release and
document
New platform components are not compatible with the
current tester
Current tester is not capable of testing in prototype phase

Need for Improvement

The Brake Signal Transmitter’s (BST) implementation in
Daimler’s new platform intensifies urgency

High production volumes require efficient testing methods

Expanding product line increases testing complexity

Figure 2: Current brake component system tester

5 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Our Solution

Multi-Input Testing Device

Addressed Challenges

Provides a unified testing platform for multiple devices
Flexible and agile to adapt to new product lines
Allows for prototype testing and validation
Automates data collection and analysis to reduce time and errors
Increases testing speed and accuracy
Simplifies validation process for warranty claims
Enhances capability to analyze field returns efficiently
Cost-effective solution

6 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Key Devices Under Test

Devices Our Solution Supports

Key Devices Under Test (DUTs)

1. Brake Signal Transmitter (BST)
Primary focus - critical new component for 2025 production
Acts as the brain that reads how hard a driver presses the brake.

2. Continuous Wear Sensor (CWS)
Works like a monitor for your brake pads and discs
Warns when brakes are wearing down using voltage

3. Pressure Sensor
Continuously measures relative pressure in vehicle control systems

4. Electronic Stability Control Module (ESCM)
Acts as a safety system that helps prevent skidding and rollovers
Monitors the vehicle’s movement and intervenes to keep it stable

7 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Table of Contents

1 Introduction
ZF
Claims Investigation Committee
Project Motivation
Our Solution
Key Devices Under Test

2 Design and Implementation
Project Solution and Overview
Hardware Design
Device Interfacing and Testing
Embedded Linux With Yocto Project
Inter-Processor Communication
Web Application and Server

3 Verification

4 Challenges

5 Future Work

6 Closing

8 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Project Solution and Overview

Project Solution

What this project aims to accomplish:

1. Device Interfacing
1.1 Properly read Device Signals using the ARM Cortex-M4 on the onboard microcontroller on the STM32MP157F-DK2:

PWM duty cycle
Frequency
Voltages through an analog-to-digital converter (ADC)
CAN frames

2. Physical Components and Hardware
2.1 Printed Circuit Board (PCB) for interfacing with DUT
2.2 PCB for scaling and managing power for the DUT and to the microcontroller
2.3 Enclosure for PCBs and STM32MP157F-DK2 board

9 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Project Solution and Overview

Project Solution (cont.)

What this project aims to accomplish:

3. Software
3.1 Custom embedded Linux distribution that will run on the onboard ARM Cortex-A7

microprocessor on the STM32MP157F-DK2
3.2 Simple user interface on web-based application
3.3 Custom Webserver to process information from web application to microcontroller
3.4 Communicate collected information from ARM Cortex-M4 to ARM Cortex-A7
3.5 Ability to download measured data, formatted as a CSV, through the web application

10 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Project Solution and Overview

Comprehensive System Block Diagram

11 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Project Solution and Overview

Gantt Chart

12 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Project Solution and Overview

Budget Projection

13 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Hardware Design

Table of Contents

1 Introduction
ZF
Claims Investigation Committee
Project Motivation
Our Solution
Key Devices Under Test

2 Design and Implementation
Project Solution and Overview
Hardware Design
Device Interfacing and Testing
Embedded Linux With Yocto Project
Inter-Processor Communication
Web Application and Server

3 Verification

4 Challenges

5 Future Work

6 Closing

14 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Hardware Design

Power Supply Schematic Design

Figure 3: power management system that converts 12V DC input into multiple usable voltage levels.

Overview
12V DC stable voltage using
LM7812 (1A)
12V to 5V DC using LM7805 (1A)
12V to 3.3V using LM317
adjustable regulator

Key Components
LM7812, LM7805, LM317
voltage regulators for
step-down conversion.
Capacitors for noise filtration.
Resistors to set voltages for
LM317 as 3.146V DC (50uA).

15 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Hardware Design

Schematic Design - Brake Signal Transmitter

Figure 4: Circuit schematic of Brake Signal Transmitter (BST)

Key Points

Captures the output of the Brake Signal
Transmitter (BST) in the form of Pulse
Width Modulation (PWM) signals.
Includes resistors and capacitors for
signal filtering.
Diodes protect the circuit from voltage
surges and reverse polarity.

16 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Hardware Design

Peripheral Interface Schematic Diagram

Figure 5: Continuous Wear Sensor Interface Schematic

Figure 6: Pressure Sensor Interface Schematic

Figure 7: String Potentiometer Interface Schematic

Key Points

Captures analog voltage signals to monitor brake
wear and pressure sensor and displacement on the
string potentiometer.
Uses voltage dividers for safe microcontroller input
levels.
Uses capacitors to stabilize the output.

17 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Hardware Design

Printed Circuit Board Design

Figure 8: PCB for Power Management

Overview

The power supply PCB converts the 12V DC input from the DC jack into regulated
output voltages for the system.

12V DC
5V DC
3.3V DC

It is designed based on the schematic with components such as voltage regulators
(LM7812, LM7805, LM317), capacitors, and resistors.

Key Components
DC Jack (J1): Connects the input 12V DC power supply to the board.

Output Pins:
J2/J3: Provides 12V DC output.
J4/J5: Provides 5V DC output.
J6/J7: Provides 3.3V DC output.

Voltage Regulators
Step-down conversion for different voltage levels.
Smooth and stable output.

Capacitors (C1-C5)
Ensure smooth voltage output by filtering noise and ripples.

Ground connections: All components are referenced to a common ground for stable operation.

18 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Hardware Design

Peripherals Printed Circuit Board

Key Features
Input/Power Pins:

Each DUT has a dedicated connector for input signals and a power
signal.
J1: Inputs for BST (PWM1 and PWM2) | J2/J3: 12V Power Signals for
BST (PWM1 and PWM2)
J8: Pressure sensor input | J9: 12V DC Power Signal
J12: Wear sensor input | J13: 5V DC Power Signal
J16: String Potentiometer input | J17: 12V DC Power signal

Output Pins:
Processed signals are sent to the microcontroller through the
output pins.
J4/J5/J6/J7: BST processed signals
J10/J11: Pressure sensor output
J14/J15: Wear sensor output
J18/J19: String potentiometer output.

Signal Conditioning:
Resistors: Scale signals for safe microcontroller input.
Capacitors: Filter noise and stabilize signals.
Capacitors: Filter noise and stabilize signals.

Figure 9: PCB for connecting to peripheral device

19 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Hardware Design

Fabricated PCB

Figure 10: Power Management PCB

Figure 11: Peripheral Interface PCB

20 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Hardware Design

Enclosure Design

Figure 12: Enclosure for STM32MP157F-DK2
Figure 13: Enclosure for PCBs

21 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Device Interfacing and Testing

Table of Contents

1 Introduction
ZF
Claims Investigation Committee
Project Motivation
Our Solution
Key Devices Under Test

2 Design and Implementation
Project Solution and Overview
Hardware Design
Device Interfacing and Testing
Embedded Linux With Yocto Project
Inter-Processor Communication
Web Application and Server

3 Verification

4 Challenges

5 Future Work

6 Closing

22 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Device Interfacing and Testing

Firmware to Test Brake Signal Transmitter (BST)
Purpose

Developed firmware on the onboard Cortex-M4 microcontroller to validate BST

Ensures brake actuation is accurate to distance moved by brake pedal

Key Specifications: Output range 1 mm to 9 mm, Sensitivity 5.96% DC/mm, Output signals PWM1 and PWM2 (S1 and S2)

Method

Input Capture: Timers captures read two PWM signals from
the BST

ADC Reading:Optional string potentiometer for direct
analog voltage measurements via ADC

Processing: Calculates duty cycles, frequencies, and
estimated stroke via timer interrupts

Validation: Compare measurements against expected
values according to product specifications to verify BST
accuracy

Results: Sends test results to the main processor for logging
and user display

Figure 14: Product Specifications for BST
23 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Device Interfacing and Testing

Firmware to Test Continuous Wear Sensor (CWS)
Purpose

Developed firmware on the onboard Cortex-M4 microcontroller to validate the Continuous Wear Sensor (CWS)

Ensures accurate measurement of brake pad wear levels to enhance vehicle safety

Key Specifications: Output range 0.7V (18 mm or new pad) to 4.0 V (53 mm or worn pad), Sensitivity 0.08 V/mm, Voltage divider
ratio 2:1

Method
1. ADC Configuration: Read direct analog voltage via ADC using DMA for efficiency and

a timer trigger for consistency

2. Wear Calculation: Mapped the measured voltage to brake pad wear using a linear
relationship and handled special conditions (e.g., new pad, worn-out pad) with
specific tolerances

3. Validation: Compared wear values against expected values based on product
specifications

4. Results: Error thresholds to determine pass/fail and send detailed test outcomes to
the main processor for logging and user display

Figure 15: Product Specifications for CWS

24 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Device Interfacing and Testing

Firmware to Test Pressure Sensor

Purpose

Developed firmware to validate Pressure Sensor readings on the Cortex-M4 microcontrooler

Ensures accurate measurement of pressure when given for reliable vehicle control system purposes

Key Specifications: Output range 0.5V (0 bar) to 4.5 V (10 bar), Sensitivity 0.4 V/Bar, Voltage divider ratio 2:1

Method
1. ADC Configuration: Configured the ADC to read analog voltage from the Pressure

Sensor using DMA for efficient data transfer and utilized a timer to trigger ADC
conversions periodically

2. Pressure Calculation: Mapped the measured voltage to pressure using a linear
relationship given in the product specifications with the addition of converted
pressure from bar to psi

3. Validation: Compared calculated pressure against expected values based on
product specifications with voltage tolerances to determine pass/fail status

4. Results: Sent detailed test outcomes to the main processor for logging and user
display

Figure 16: Product Specifications for CWS

25 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Embedded Linux With Yocto Project

Table of Contents

1 Introduction
ZF
Claims Investigation Committee
Project Motivation
Our Solution
Key Devices Under Test

2 Design and Implementation
Project Solution and Overview
Hardware Design
Device Interfacing and Testing
Embedded Linux With Yocto Project
Inter-Processor Communication
Web Application and Server

3 Verification

4 Challenges

5 Future Work

6 Closing

26 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Embedded Linux With Yocto Project

Embedded Linux and The Yocto Project

Embedded Linux

Industry standard for embedded Operating system
Rich ecosystem of open-source tools and software

The Yocto Project

Collection of tools to build a custom embedded
Linux distribution
Fine-grain control of every aspect of deployed
image

27 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Embedded Linux With Yocto Project

Embedded Linux

Figure 17: Source:https://bootlin.com/
Embedded Linux system architecture

Why use embedded Linux?

Industry standard for any embedded operating system

Access to open-source software (OSS) and tools

Networking and connectivity made easy

Easily save/access data with filesystem

28 / 46

https://bootlin.com/


Introduction Design and Implementation Verification Challenges Future Work Closing

Embedded Linux With Yocto Project

Using The Yocto Project to Build a Custom Distribution

What is the Yocto Project and why?

Most popular set of tools for embedded Linux
Development
Collection of OSS tools to make a custom Linux
distribution
Independent of target architecture
bitbake build tool handles metadata
MetaData can be in the form of

software build/patch instructions
configuration files for software

MetaData organized in its Layer Model

Figure 18: Source: https://docs.yoctoproject.org
High-level diagram representing how builds work using The Yocto Project

29 / 46

https://docs.yoctoproject.org


Introduction Design and Implementation Verification Challenges Future Work Closing

Embedded Linux With Yocto Project

Custom Linux Image for the STM32MP1-DK2

What is used in the deployed image?

ST’s BSP (board support package) layer provides
metadata

Hardware drivers
Kernel Configurations
Devicetree

Custom layer meta-zf-project
nginx (webserver), wpa_supplicant (Wi-Fi access
client/ IEEE 802.1X supplicant)
recipes for custom applications (Web application,
Server, Cortex-M4 Firmware)
Kernel configurations and custom Devicetree

Figure 19: Layer Model representation of this project for deploying onto a STM32MP1-DK2

30 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Inter-Processor Communication

Table of Contents

1 Introduction
ZF
Claims Investigation Committee
Project Motivation
Our Solution
Key Devices Under Test

2 Design and Implementation
Project Solution and Overview
Hardware Design
Device Interfacing and Testing
Embedded Linux With Yocto Project
Inter-Processor Communication
Web Application and Server

3 Verification

4 Challenges

5 Future Work

6 Closing

31 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Inter-Processor Communication

Inter-Process Communication on a Heterogenous Architecture
With a heterogenous architecture (ARM Cortex-A7 and ARM Cortex-M4) how can information be shared?
Hetergenous multiprocessor SoCs cannot directly communicate

OpenAMP (Asymmetric Multi-Processing) Project
Software framework that places standard protocol for shared
memory

Implemented on top of virtio framework

STM provides virt_uart driver for recieving/transmitting messages
over RPMsg protocol

STMP1 layer automatically enables the RPMSG tty driver kernel
module

creates file in Linux filesystem: /dev/ttyRPMSG<X>
can read and write to like a normal file

remoteproc framework allows dynamic and remote loading of
Cortex-M4 firmware

Resource Table defined in firmware opens a trace in
/sys/kernel/debug/remoteproc/remoteproc0/trace0

Used for logging measured data in CSV format

Figure 20: Inter-processor communication between Cortex-A7 (Linux) and Cortex-M4
(Microcontroller)

32 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Web Application and Server

Table of Contents

1 Introduction
ZF
Claims Investigation Committee
Project Motivation
Our Solution
Key Devices Under Test

2 Design and Implementation
Project Solution and Overview
Hardware Design
Device Interfacing and Testing
Embedded Linux With Yocto Project
Inter-Processor Communication
Web Application and Server

3 Verification

4 Challenges

5 Future Work

6 Closing

33 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Web Application and Server

Rust

The Rust programming language was used to write both major
applications (web-based application and web server) for 2 main
reasons.

Figure 21: Ferris, universally accepted
mascot of the Rust Programming
language

Memory Safety and Performance

A set of rules called Ownership enforced by compiler to prevent memory leaks
Borrow checker within the compiler prevents programs unsafe programs from compiling*
Nearly as or just as performant as C with Zero Cost Abstractions
Advocated by/used by several United States goverment agencies:

National Security Agency (NSA) and Cybersecurity and Infrastructure Security Agency (CISA)
Defense Advance Research Projects Agency
The White House

34 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Web Application and Server

Web-Application for User Interface

Web Application in WebAssembly (WASM)

WASM is a compiled, binary format executable
Much faster than traditional Javascript programs
Using the Yew framework, written in Rust

Web application Features

Shows if application is connected to associated server
Selection of different devices
Shows progress and state of test
Allows download to results in a CSV

Figure 22: Web application with dropdown selection of different devices

35 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Web Application and Server

Custom API Web Server

Web Server features

Handles HTTP requests from web application
Dynamically loads M4 Firmware for selected device
with remoteproc
Polls for results by reading and writing to
/dev/ttyRPMSG0
Saves information from
/sys/kernel/debug/remoteproc/remoteproc0/trace0
as CSV for download

Figure 23: Console logging of server application

36 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Web Application and Server

Software Architecture

37 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Table of Contents

1 Introduction
ZF
Claims Investigation Committee
Project Motivation
Our Solution
Key Devices Under Test

2 Design and Implementation
Project Solution and Overview
Hardware Design
Device Interfacing and Testing
Embedded Linux With Yocto Project
Inter-Processor Communication
Web Application and Server

3 Verification

4 Challenges

5 Future Work

6 Closing

38 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Link to video demonstration

https://dylxndy.xyz/senior-design-presentation/verification

39 / 46

https://dylxndy.xyz/senior-design-presentation/verification


Introduction Design and Implementation Verification Challenges Future Work Closing

Table of Contents

1 Introduction
ZF
Claims Investigation Committee
Project Motivation
Our Solution
Key Devices Under Test

2 Design and Implementation
Project Solution and Overview
Hardware Design
Device Interfacing and Testing
Embedded Linux With Yocto Project
Inter-Processor Communication
Web Application and Server

3 Verification

4 Challenges

5 Future Work

6 Closing

40 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Challenges

System Clock configuration with Devicetree
Timer configuration for PWM signals
Mini-360 Buck Converter
PCB Creation

41 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Table of Contents

1 Introduction
ZF
Claims Investigation Committee
Project Motivation
Our Solution
Key Devices Under Test

2 Design and Implementation
Project Solution and Overview
Hardware Design
Device Interfacing and Testing
Embedded Linux With Yocto Project
Inter-Processor Communication
Web Application and Server

3 Verification

4 Challenges

5 Future Work

6 Closing

42 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Future Work

Finish CAN implementation for ESCM
USB to CAN used currently
enabled CAN_GS_USB module in Linux Kernel

Improve Web application appearance

43 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Table of Contents

1 Introduction
ZF
Claims Investigation Committee
Project Motivation
Our Solution
Key Devices Under Test

2 Design and Implementation
Project Solution and Overview
Hardware Design
Device Interfacing and Testing
Embedded Linux With Yocto Project
Inter-Processor Communication
Web Application and Server

3 Verification

4 Challenges

5 Future Work

6 Closing

44 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Special Thanks

Dr. Grantner (faculty advisor)
David Florida (lab technician)
Patrick McNally (Head of Engineering at ZF Group - Auburn Hills, MI)
Davis Roman (Senior Staff Software Engineer at Rivian - Palo Alto, CA)

45 / 46



Introduction Design and Implementation Verification Challenges Future Work Closing

Thank you

Any Questions?

Project Sources

Custom Yocto Project Layer:
https://github.com/DMGDy/meta-zf-project

Custom Web Server in Rust
https://github.com/DMGDy/zf-webserver-app

Web Application in WASM
https://github.com/DMGDy/zf-yew-app

Microcontroller Firmware
https://github.com/danb127/Brake-System-Tester

This Presentation
https://github.com/DMGDy/ECE4820-Presentation

46 / 46

https://github.com/DMGDy/meta-zf-project
https://github.com/DMGDy/zf-webserver-app
https://github.com/DMGDy/zf-yew-app
https://github.com/danb127/Brake-System-Tester
https://github.com/DMGDy/ECE4820-Presentation

	Introduction
	ZF
	Claims Investigation Committee
	Project Motivation
	Our Solution
	Key Devices Under Test

	Design and Implementation
	Project Solution and Overview
	Hardware Design
	Device Interfacing and Testing
	Embedded Linux With Yocto Project
	Inter-Processor Communication
	Web Application and Server

	Verification
	Challenges
	Future Work
	Closing

