Claims Investigation Committee Multi-Input Testing Device

ECE-4820: Electrical and Computer Engineering Design II

Dylan-Matthew Garza Daniel Baker Rohullah Sah

Department of Electrical and Computer Engineering Western Michigan University

> ZF Group Auburn Hills, MI

Fall 2024

Faculty Advisor: Dr. Janos Grantner Sponsor Manager: Patrick McNally

Introduction	Design and Implementation	Verification	Challenges	Future Work	Closing
●○○○○○		OO	OO	OO	000

Table of Contents

Introduction

- ZF
- Claims Investigation Committee
- Project Motivation
- Our Solution
- Key Devices Under Test
- 2 Design and Implementation
 - Project Solution and Overview
 - Hardware Design
 - Device Interfacing and Testing
 - Embedded Linux With Yocto Project
 - Inter-Processor Communication
 - Web Application and Server

3 Verification

4 Challenges

5 Future Work

6 Closing

Who is ZF?

- Global technology company and Tier 1 automotive supplier
- Provides advanced safety systems and vehicle control solutions
- Partners with major OEMs: Daimler, Chrysler, Tesla, Waymo(Google), etc.
- A leading innovator in commercial vehicle technology

North American Headquarters

- Project based at ZF Group's North American headquarters in Auburn Hills, MI
- Specializes in commercial vehicle solutions
- This facility is also home to the Claims Investigation Center

Figure 1: Source: google.com ZF Group Office in Auburn Hills, Mi

Introduction	Design and Implementation	Verification	Challenges OO	Future Work OO	Closing 000
Claims Investigation Comn	nittee				
Claims Inve	stigation Committee				

What is the Claims Investigation Center?

- Specialized team focused on testing and initial investigation of field failure parts for commercial vehicles
- Identifies new field failures and determine areas for product improvement
- Works closely with Technical Call Centers, Field Quality, and Warranty teams
- Ensures readiness to test and analyze new product field returns at launch

CIC's Role in Our Project

- Requires enhanced testing capabilites for new products
- Our project aims to develop a device to streamline testing and data collection
- Helps the CIC efficiently validate warranty claims and analyze field returns
- Supports the CIC's mission to improve product quality and customer satisfaction

Introduction	Design and Implementation	Verification OO	Challenges OO	Future Work OO	Closing 000
Project Motivation					

Motivation for the Project

Challenges with Current Testing Methods

- Testing on current brake system platform (mBSP) was built and industrialized specifically for that platform
- Long lead time and significant cost to release and document
- New platform components are not compatible with the current tester
- Current tester is not capable of testing in prototype phase

Need for Improvement

- The Brake Signal Transmitter's (BST) implementation in Daimler's new platform intensifies urgency
- High production volumes require efficient testing methods
- Expanding product line increases testing complexity

Figure 2: Current brake component system tester

Introduction	Design and Implementation	Verification OO	Challenges OO	Future Work OO	Closing 000
Our Solution					
Multi-Input T	esting Device				

Addressed Challenges

- Provides a unified testing platform for multiple devices
- Flexible and agile to adapt to new product lines
- Allows for prototype testing and validation
- Automates data collection and analysis to reduce time and errors
- Increases testing speed and accuracy
- Simplifies validation process for warranty claims
- Enhances capability to analyze field returns efficiently
- Cost-effective solution

Introduction ○○○○○●	Design and Implementation	Verification OO	Challenges OO	Future Work OO	Closing 000
Key Devices Under Test					
Devices Our S	olution Supports				

Key Devices Under Test (DUTs)

1. Brake Signal Transmitter (BST)

- Primary focus critical new component for 2025 production
- Acts as the brain that reads how hard a driver presses the brake.

2. Continuous Wear Sensor (CWS)

- Works like a monitor for your brake pads and discs
- Warns when brakes are wearing down using voltage

3. Pressure Sensor

• Continuously measures relative pressure in vehicle control systems

4. Electronic Stability Control Module (ESCM)

- Acts as a safety system that helps prevent skidding and rollovers
- Monitors the vehicle's movement and intervenes to keep it stable

Introduction	Design and Implementation	Verification	Challenges	Future Work	Closing
000000	●●●●●●●●●●●●●●●●●	OO	OO	OO	000

Table of Contents

Introduction

- ZF
- Claims Investigation Committee
- Project Motivation
- Our Solution
- Key Devices Under Test
- Design and Implementation
 - Project Solution and Overview
 - Hardware Design
 - Device Interfacing and Testing
 - Embedded Linux With Yocto Project
 - Inter-Processor Communication
 - Web Application and Server

3 Verification

4 Challenges

5 Future Work

6 Closing

Introduction 000000	Design and Implementation ○●○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	Verification OO	Challenges OO	Future Work OO	Closing 000
Project Solution and Overview					
Project Soluti	on				

What this project aims to accomplish:

1. Device Interfacing

- 1.1 Properly read Device Signals using the ARM Cortex-M4 on the onboard microcontroller on the STM32MP157F-DK2:
 - PWM duty cycle
 - Frequency
 - Voltages through an analog-to-digital converter (ADC)
 - CAN frames

2. Physical Components and Hardware

- 2.1 Printed Circuit Board (PCB) for interfacing with DUT
- 2.2 PCB for scaling and managing power for the DUT and to the microcontroller
- 2.3 Enclosure for PCBs and STM32MP157F-DK2 board

Introduction 000000	Design and Implementation $\circ \circ \circ$	Verification OO	Challenges OO	Future Work OO	Closing 000
Project Solution and Overview					
Project Soluti	on (cont.)				

What this project aims to accomplish:

3. Software

- 3.1 Custom embedded **Linux** distribution that will run on the onboard ARM Cortex-A7 microprocessor on the **STM32MP157F-DK2**
- 3.2 Simple user interface on web-based application
- 3.3 Custom Webserver to process information from web application to microcontroller
- 3.4 Communicate collected information from ARM Cortex-M4 to ARM Cortex-A7
- 3.5 Ability to download measured data, formatted as a CSV, through the web application

oduction	Design and Implementation	Verification	Challenges	Future Work	Closing
0000		OO	OO	OO	000

Project Solution and Overview

Comprehensive System Block Diagram

000000	

Design and Implementation

Project Solution and Overvie Gantt Chart

GONE OFLANM.	Ø			
CONE OFLAN-M.				
GONE OFLANM.		e		
DONE OFLAN-M.				
COME BANTS NO		Ø		
CONE OFLAN-M.		_		
				e
TO ED OFLAN-M.	-			8
CONF OFLANM.	0			
DONE OFLAN-M.			0	
COM BRANM.				
SONE OFLANM.				ø
CONE BFLAN-M.				
				ø
COM BELANM.				
SOME OFLANM.				
BONE BPLANM.				
CONF OFLAN-M.				
				8
DONE OFLANM				
COME OFLAN-M.			8	
COM OFLAN-M.				
BONE OFLAN-M.				0
COM BELAN-M.			0	
CONE OFLANM				
CONE OFLAN-M.				
COME OFLAN-M.				
DONE DWNIEL B.				
TO DO ENVIEL B				
DONE OFLANM.			A	
DONE DANIEL B.				
DONE DWITLE.		Ø		
TO DO ROHILLAH				
DONE ROHILLAH.				
DONE BOHILLAH.				
DONE BOHILLAR.				

12/46

Verification

Challenges

Future OO Closing 000

Project Solution and Overview Budget Projection

	Project Title			Multi	-Signal Automotiv	e Testing Device	
	Date				11/22/20	24	
Category	item	Quantity	Estimated Under/Over	Unit Price	Shipping + Tax	Total Costs	Description
	STM32MP157-DK2	4		\$109.00	\$0.00	\$436.00	ARM Cortex A7 & ARM Cortex M4
	String Potentiometer	1		\$50.00	\$0.00	\$50.00	Detect and measure linear displacement
	Continuous Wear Sensor	2		\$335.20	\$0.00	\$670.40	Monitors the wear of brake pads
	Continuous Wear Sensor Harness	2		\$0.00	\$0.00	\$0.00	Wear Sensor Connector
	Linear Position Sensor	1		\$50.00	\$0.00	\$50.00	Measures the position
	USB to CAN Cable	2		\$47.99	\$10.00	\$105.98	Converts USB to CAN
	Pressure Sensor	2		\$0.00	\$0.00	\$0.00	Sensor for measuring pressure data
	Electronic Stability Control Module	1		\$0.00	\$0.00	\$0.00	Data for vehicle stability
	Brake Signal Transmitter	1		\$0.00	\$0.00	\$0.00	Brake Pedal to receive signals
	Anti-static Wrist Band	1		\$7.95	\$0.00	\$7.95	Grounding Wristband
	SD Card Reader	1		\$20.00	\$0.00	\$20.00	SD Card Reader
HARDWARE	MINI360 Buck Converter	2		\$6.99	\$13.66	\$27.64	Voltage Supply Regulator
	LM78xx Buck Converter	1		\$13.99	\$0.00	\$13.99	Voltage Supply Regulator
	LM2596 Buck Converter	1		\$12.89	\$0.00	\$12.89	Voltage Supply Regulator
	50 Values Resistor Kit	1		\$12.99	\$0.00	\$12.99	Signal Conditioning Components
	24 Electrolytic Capacitors	1		\$9.99	\$0.00	\$9.99	Signal Conditioning Components
	10 Values Rectifier Diodes	1		\$9.99	\$0.00	\$9.99	Signal Conditioning Components
	Screw Terminals	1		\$9.99	\$0.00	\$9.99	PCB Mount Terminals
	Male & Female Pin Holders	1		\$12.99	\$9.99	\$22.98	Pin Holders on PCB
	Female DC Power Barrel Jacks	1		\$5.99	\$0.00	\$5.99	PCB Mount
	PCB Board Kit	1		\$13.99	\$0.00	\$13.99	Prototype Kit
	PCB Board Kit Copper	1	-	\$7.99	\$0.00	\$7.99	Prototype Kit
	Custom PCB	10	-	\$1.00	\$19.99	\$29.99	Custom designed circuit Board

Category	Total Costs
Hardware Costs	\$1,518.75
Miscellaneous Costs	\$0.00
Grand Total	\$1,518.75

Introduction 000000	Design and Implementation ○○○○○○●○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	Verification OO	Challenges OO	Future Work OO	Closing 000
Hardware Design					
Table of Cont	onts				

1 Introduction

Introduc

- o ZF
- Claims Investigation Committee
- Project Motivation
- Our Solution
- Key Devices Under Test
- 2 Design and Implementation
 - Project Solution and Overview
 - Hardware Design
 - Device Interfacing and Testing
 - Embedded Linux With Yocto Project
 - Inter-Processor Communication
 - Web Application and Server

Verification

- 4 Challenges
- 5) Future Work
- 6 Closing

verification

Hardware Design Power Supply Schematic Design

Figure 3: power management system that converts 12V DC input into multiple usable voltage levels

Overview

- 12V DC stable voltage using LM7812 (1A)
- 12V to 5V DC using LM7805 (1A)
- 12V to 3.3V using LM317 adjustable regulator

Key Components

- LM7812, LM7805, LM317
 voltage regulators for step-down conversion.
- Capacitors for noise filtration.
- Resistors to set voltages for LM317 as 3.146V DC (50uA).

Design and Implementation

Challenges OO

Closir OOC

Hardware Design Schematic Design - Brake Signal Transmitter

Figure 4: Circuit schematic of Brake Signal Transmitter (BST)

Key Points

- Captures the output of the Brake Signal Transmitter (BST) in the form of Pulse Width Modulation (PWM) signals.
- Includes resistors and capacitors for signal filtering.
- Diodes protect the circuit from voltage surges and reverse polarity.

roduction	Design and Implementation 000000000000000000000000000000000000	Verification	Challenges	Future Work	Closing
DOOOO		OO	OO	OO	000

Hardware Design Peripheral Interface Schematic Diagram

Figure 5: Continuous Wear Sensor Interface Schematic

Key Points

- Captures analog voltage signals to monitor brake wear and pressure sensor and displacement on the string potentiometer.
- Uses voltage dividers for safe microcontroller input levels.
- Uses capacitors to stabilize the output.

Figure 6: Pressure Sensor Interface Schematic

on

Hardware Design Printed Circuit Board Design

Figure 8: PCB for Power Management

Overview

- The power supply PCB converts the 12V DC input from the DC jack into regulated output voltages for the system.
 - 12V DC
 - 5V DC
 - 3.3V DC
- It is designed based on the schematic with components such as voltage regulators (LM7812, LM7805, LM317), capacitors, and resistors.

Key Components

- DC Jack (J1): Connects the input 12V DC power supply to the board.
- Output Pins:
 - J2/J3: Provides 12V DC output.
 - J4/J5: Provides 5V DC output.
 - J6/J7: Provides 3.3V DC output.
- Voltage Regulators
 - Step-down conversion for different voltage levels.
 - Smooth and stable output.
- Capacitors (C1-C5)
 - Ensure smooth voltage output by filtering noise and ripples.
- Ground connections: All components are referenced to a common ground for stable operation.

00

Challenges OO

Hardware Design

Peripherals Printed Circuit Board

Key Features

- Input/Power Pins:
 - Each DUT has a dedicated connector for input signals and a power signal.
 - JJ: Inputs for BST (PWM1 and PWM2) | J2/J3: 12V Power Signals for BST (PWM1 and PWM2)
 - J8: Pressure sensor input | J9: 12V DC Power Signal
 - J12: Wear sensor input | J13: 5V DC Power Signal
 - J16: String Potentiometer input | J17: 12V DC Power signal

Output Pins:

- Processed signals are sent to the microcontroller through the output pins.
- J4/J5/J6/J7: BST processed signals
- J10/J11: Pressure sensor output
- J14/J15: Wear sensor output
- J18/J19: String potentiometer output.
- Signal Conditioning:
 - Resistors: Scale signals for safe microcontroller input.
 - Capacitors: Filter noise and stabilize signals.
 - Capacitors: Filter noise and stabilize signals.

Figure 9: PCB for connecting to peripheral device

oduction	Design and Implementation	Verification	Challenges	Future Work	Closing
0000		OO	OO	OO	000

Hardware Design Fabricated PCB

Figure 11: Peripheral Interface PCB

Figure 10: Power Management PCE

ction OO	Design and Implementation	Verification OO	Challenges OO	Future Work OO	Closing 000
^{re Design} C losure D	vesign				
Č					

Figure 12: Enclosure for STM32MP157F-DK.

Ha

Introduction 000000	Design and Implementation	Verification OO	Challenges OO	Future Work OO	Closing 000
Device Interfacing and Testing					
Table of Cont	ents				

Introduction

- ZF
- Claims Investigation Committee
- Project Motivation
- Our Solution
- Key Devices Under Test
- 2 Design and Implementation
 - Project Solution and Overview
 - Hardware Design
 - Device Interfacing and Testing
 - Embedded Linux With Yocto Project
 - Inter-Processor Communication
 - Web Application and Server

Verification

4 Challenges

5) Future Work

6 Closing

Introduction 000000	Design and Implementation ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	Verification	Challenges OO	Future Work OO	Closing 000
Device Interfacing and T	esting				
Firmware t	o Test Brake Signal Transmitter (BS	5T)			
Purpose					

Developed firmware on the onboard Cortex-M4 microcontroller to validate BST

- Ensures brake actuation is accurate to distance moved by brake pedal
- Key Specifications: Output range 1 mm to 9 mm, Sensitivity 5.96% DC/mm, Output signals PWM1 and PWM2 (S1 and S2)

Method

- Input Capture: Timers captures read two PWM signals from the BST
- ADC Reading:Optional string potentiometer for direct analog voltage measurements via ADC
- **Processing:** Calculates duty cycles, frequencies, and estimated stroke via timer interrupts
- Validation: Compare measurements against expected values according to product specifications to verify BST accuracy
- Results: Sends test results to the main processor for logging and user display

	troduction 00000	Design and Implementation ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	Verification OO	Challenges OO	Future Work OO	Closing OOO
D	evice Interfacing and Testing					
	Firmware to T	Fest Continuous Wear Sensor ((CWS)			
	Purpose					
	O Develope	ed firmware on the onboard Cortex-M4 microco	ontroller to validate the Co	ntinuous Wear Senso	r(CMS)	

- Ensures accurate measurement of brake pad wear levels to enhance vehicle safety
- Key Specifications: Output range 0.7V (18 mm or new pad) to 4.0 V (53 mm or worn pad), Sensitivity 0.08 V/mm, Voltage divider ratio 2:1

Method

- 1. ADC Configuration: Read direct analog voltage via ADC using DMA for efficiency and a timer trigger for consistency
- Wear Calculation: Mapped the measured voltage to brake pad wear using a linear relationship and handled special conditions (e.g., new pad, worn-out pad) with specific tolerances
- 3. Validation: Compared wear values against expected values based on product specifications
- 4. **Results:** Error thresholds to determine pass/fail and send detailed test outcomes to the main processor for logging and user display

Figure 15: Product Specifications for CWS

00

Device Interfacing and Testing Firmware to Test Pressure Sensor

Purpose

- Developed firmware to validate Pressure Sensor readings on the Cortex-M4 microcontrooler
- Ensures accurate measurement of pressure when given for reliable vehicle control system purposes
- Key Specifications: Output range 0.5V (0 bar) to 4.5 V (10 bar), Sensitivity 0.4 V/Bar, Voltage divider ratio 2:1

Method

- ADC Configuration: Configured the ADC to read analog voltage from the Pressure Sensor using DMA for efficient data transfer and utilized a timer to trigger ADC conversions periodically
- Pressure Calculation: Mapped the measured voltage to pressure using a linear relationship given in the product specifications with the addition of converted pressure from bar to psi
- Validation: Compared calculated pressure against expected values based on product specifications with voltage tolerances to determine pass/fail status
- Results: Sent detailed test outcomes to the main processor for logging and user display

Figure 16: Product Specifications for CWS

Introduction 000000	Design and Implementation	Verification OO	Challenges OO	Future Work OO	Closing 000	
Embedded Linux With Yocto Project						
Table of Cont	ents					

Introduction

- ZF
- Claims Investigation Committee
- Project Motivation
- Our Solution
- Key Devices Under Test
- 2) Design and Implementation
 - Project Solution and Overview
 - Hardware Design
 - Device Interfacing and Testing
 - Embedded Linux With Yocto Project
 - Inter-Processor Communication
 - Web Application and Server

Verification

4 Challenges

5) Future Work

6 Closing

verification

OO Challenges

Embedded Linux With Yocto Project Embedded Linux and The Yocto Project

Embedded Linux

- Industry standard for embedded Operating system
- Rich ecosystem of open-source tools and software

The Yocto Project

- Collection of tools to build a custom embedded Linux distribution
- Fine-grain control of every aspect of deployed image

Verification OO

Embedded Linux With Yocto Project Embedded Linux

Figure 17: Source:https://bootlin.com/ Embedded Linux system architecture

Why use embedded Linux?

- Industry standard for any embedded operating system
- Access to open-source software (OSS) and tools
- Networking and connectivity made easy
- Easily save/access data with filesystem

Introduction	Design and Implementation	Verification	Challenges	Future Work	Closing
000000		OO	OO	OO	000

Embedded Linux With Yocto Project

Using The Yocto Project to Build a Custom Distribution

What is the Yocto Project and why?

- Most popular set of tools for embedded Linux
 Development
- Collection of OSS tools to make a custom Linux distribution
- Independent of target architecture
- bitbake build tool handles metadata
- MetaData can be in the form of
 - software build/patch instructions
 - configuration files for software
- MetaData organized in its Layer Model

Figure 18: Source: https://docs.yoctoproject.org High-level diagram representing how builds work using The Yocto Project

00

Embedded Linux With Yocto Project

Custom Linux Image for the STM32MP1-DK2

What is used in the deployed image?

- ST's BSP (board support package) layer provides metadata
 - Hardware drivers
 - Kernel Configurations
 - Devicetree
- Custom layer meta-zf-project
 - nginx (webserver), wpa_supplicant (Wi-Fi access client/ IEEE 802.1X supplicant)
 - recipes for custom applications (Web application, Server, Cortex-M4 Firmware)
 - Kernel configurations and custom Devicetree

Figure 19: Layer Model representation of this project for deploying onto a STM32MP1-DK2

Introduction 000000	Design and Implementation ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	Verification OO	Challenges OO	Future Work OO	Closing 000
Inter-Processor Communicatio	on				
Table of Cont	ents				

Introduction

- ZF
- Claims Investigation Committee
- Project Motivation
- Our Solution
- Key Devices Under Test
- 2) Design and Implementation
 - Project Solution and Overview
 - Hardware Design
 - Device Interfacing and Testing
 - Embedded Linux With Yocto Project
 - Inter-Processor Communication
 - Web Application and Server

3) Verification

4 Challenges

5) Future Work

6 Closing

Introduction	Design and Implementation	Verification	Challenges	Future Work	Closing
000000	○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	OO	OO	OO	000

Inter-Processor Communication

Inter-Process Communication on a Heterogenous Architecture

With a heterogenous architecture (ARM Cortex-A7 and ARM Cortex-M4) how can information be shared?

Hetergenous multiprocessor SoCs cannot directly communicate

OpenAMP (Asymmetric Multi-Processing) Project

- Software framework that places standard protocol for shared memory
- Implemented on top of virtio framework
- STM provides virt_uart driver for recieving/transmitting messages over RPMsg protocol
- STMP1 layer automatically enables the RPMSG tty driver kernel module
 - creates file in Linux filesystem: /dev/ttyRPMSG<X>
 - can read and write to like a normal file
- remoteproc framework allows dynamic and remote loading of Cortex-M4 firmware
- Resource Table defined in firmware opens a trace in /sys/kernel/debug/remoteproc/remoteproc0/trace0
 - Used for logging measured data in CSV format

Figure 20: Inter-processor communication between Cortex-A7 (Linux) and Cortex-M4 (Microcontroller)

Introduction 000000	Design and Implementation	Verification OO	Challenges OO	Future Work OO	Closing 000
Web Application and Server					
Table of Cont	ents				

1) Introduction

- ZF
- Claims Investigation Committee
- Project Motivation
- Our Solution
- Key Devices Under Test

2) Design and Implementation

- Project Solution and Overview
- Hardware Design
- Device Interfacing and Testing
- Embedded Linux With Yocto Projection
- Inter-Processor Communication
- Web Application and Server

3) Verificatio

- 4 Challenges
- 5) Future Work
- 6 Closing

Introduction	Design and Implementation	Verification	Challenges	Future Work	Closing
000000	○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	OO	OO	OO	000
Web Application and Server					

Rust

The Rust programming language was used to write both major applications (web-based application and web server) for 2 main reasons.

Figure 21: Ferris, universally accepted mascot of the Rust Programming language

Memory Safety and Performance

- A set of rules called **Ownership** enforced by compiler to prevent memory leaks
- Borrow checker within the compiler prevents programs unsafe programs from compiling*
- Nearly as or just as performant as C with Zero Cost Abstractions
- Advocated by/used by several United States goverment agencies:
 - National Security Agency (NSA) and Cybersecurity and Infrastructure Security Agency (CISA)
 - Defense Advance Research Projects Agency
 - The White House

Verification

Web Application and Server Web-Application for User Interface

Web Application in WebAssembly (WASM)

- WASM is a compiled, binary format executable
- Much faster than traditional Javascript programs
- Using the Yew framework, written in Rust

Web application Features

- Shows if application is connected to associated server
- Selection of different devices
- Shows progress and state of test
- Allows download to results in a CSV

ZF Device Test Web Application

Chosen Device: Brake Signal Transmitter
Show Devices:

Brake Signal Transmitter Continuous Wear Sensor Pressure Sensor Electronic Stability Control Module Use String Potentiometer

Server State: 1 Server is up. Waiting for test to begin.

Start Test

Figure 22: Web application with dropdown selection of different devices

Verification

Web Application and Server Custom API Web Server

Web Server features

- Handles HTTP requests from web application
- Dynamically loads M4 Firmware for selected device with **remoteproc**
- Polls for results by reading and writing to /dev/ttyRPMSG0
- Saves information from /sys/kernel/debug/remoteproc/remoteproc0/trace0 as CSV for download

----<u>Rust Server for Web Assembly Application</u>---

Server Listening http://172.20.10.7:8080...

Attempting to read from device... Message ping written successfully! Response was: Pass

Successfully created data/BST-test.csv of test Firmware for BST has been deloaded: fw_cortex_m4.sh: fmw_name=BST-Firmware.elf

Figure 23: Console logging of server application

Introduction	Design and Implementation	Verification	Challenges	Future Work	Closing
000000		●O	OO	OO	000

Table of Contents

Introduction

- ZF
- Claims Investigation Committee
- Project Motivation
- Our Solution
- Key Devices Under Test
- 2 Design and Implementation
 - Project Solution and Overview
 - Hardware Design
 - Device Interfacing and Testing
 - Embedded Linux With Yocto Project
 - Inter-Processor Communication
 - Web Application and Server

Verification

4 Challenge

5 Future Work

6 Closing

Introduction	Design and Implementation	Verification	Challenges	Future Work	Closing
000000		○●	OO	OO	000

Link to video demonstration

https://dylxndy.xyz/senior-design-presentation/verification

	Introduction 000000	Design and Implementation	Verification OO	Challenges ●O	Future Work OO	Closing 000
--	------------------------	---------------------------	--------------------	------------------	-------------------	----------------

Table of Contents

Challenges

Introduction	Design and Implementation	Verification	Challenges	Future Work	Closing
000000		OO	○●	OO	000

Challenges

- System Clock configuration with Devicetree
- Timer configuration for PWM signals
- Mini-360 Buck Converter
- PCB Creation

Introduction	Design and Implementation	Verification	Challenges	Future Work	Closing
000000		OO	OO	●O	000

Table of Contents

Introduction

- ZF
- Claims Investigation Committee
- Project Motivation
- Our Solution
- Key Devices Under Test
- 2 Design and Implementation
 - Project Solution and Overview
 - Hardware Design
 - Device Interfacing and Testing
 - Embedded Linux With Yocto Project
 - Inter-Processor Communication
 - Web Application and Server

³ Verification

4 Challenges

Introduction	Design and Implementation	Verification	Challenges	Future Work	Closing
000000		OO	OO	○●	000

Future Work

- - USB to CAN used currently
 enabled CAN_GS_USB module in Linux Kernel
- Improve Web application appearance

Introduction	Design and Implementation	Verification	Challenges	Future Work	Closing
000000		OO	OO	OO	●00

Table of Contents

Introduction

- ZF
- Claims Investigation Committee
- Project Motivation
- Our Solution
- Key Devices Under Test
- 2 Design and Implementation
 - Project Solution and Overview
 - Hardware Design
 - Device Interfacing and Testing
 - Embedded Linux With Yocto Project
 - Inter-Processor Communication
 - Web Application and Server

³ Verification

4 Challenges

5) Future Work

6 Closing

Introduction	Design and Implementation	Verification	Challenges	Future Work	Closing
000000		OO	OO	OO	O●O

Special Thanks

- Dr. Grantner (faculty advisor)
- David Florida (lab technician)
- Patrick McNally (Head of Engineering at ZF Group Auburn Hills, MI)
- Davis Roman (Senior Staff Software Engineer at Rivian Palo Alto, CA)

Introduction	Design and Implementation	Verification	Challenges	Future Work	Closing
000000		OO	OO	OO	OOO

Thank you

Any Questions?

Project Sources

- Custom Yocto Project Layer:
 - https://github.com/DMGDy/meta-zf-project
- Custom Web Server in Rust
 - https://github.com/DMGDy/zf-webserver-app
- Web Application in WASM
 - https://github.com/DMGDy/zf-yew-app
- Microcontroller Firmware
 - https://github.com/danb127/Brake-System-Tester
- This Presentation
 - https://github.com/DMGDy/ECE4820-Presentation